Adaptive Neural Network Controller Design for Blended-wing Uav with Complex Damage
نویسندگان
چکیده
This paper presents neural network controller design for complex damage to a blended wing UAV (Unmanned Aerial Vehicle): partial loss of main wing and vertical tail. Longitudinal/lateral axis instability and the change of flight dynamics is investigated via numerical simulation. Based on this, neural network based adaptive controller combined with feedback linearization is designed in order to compensate for the complex damage. Numerical simulation verifies that the instability from the complex damage of the UAV can be stabilized via the proposed adaptive controller.
منابع مشابه
On the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملDesign of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016